Zc3h10 is a novel mitochondrial regulator

Zc3h10 是一种新型线粒体调节剂

阅读:10
作者:Matteo Audano, Silvia Pedretti, Gaia Cermenati, Elisabetta Brioschi, Giuseppe Riccardo Diaferia, Serena Ghisletti, Alessandro Cuomo, Tiziana Bonaldi, Franco Salerno, Marina Mora, Liliana Grigore, Katia Garlaschelli, Andrea Baragetti, Fabrizia Bonacina, Alberico Luigi Catapano, Giuseppe Danilo Norata

Abstract

Mitochondria are the energy-generating hubs of the cell. In spite of considerable advances, our understanding of the factors that regulate the molecular circuits that govern mitochondrial function remains incomplete. Using a genome-wide functional screen, we identify the poorly characterized protein Zinc finger CCCH-type containing 10 (Zc3h10) as regulator of mitochondrial physiology. We show that Zc3h10 is upregulated during physiological mitochondriogenesis as it occurs during the differentiation of myoblasts into myotubes. Zc3h10 overexpression boosts mitochondrial function and promotes myoblast differentiation, while the depletion of Zc3h10 results in impaired myoblast differentiation, mitochondrial dysfunction, reduced expression of electron transport chain (ETC) subunits, and blunted TCA cycle flux. Notably, we have identified a loss-of-function mutation of Zc3h10 in humans (Tyr105 to Cys105) that is associated with increased body mass index, fat mass, fasting glucose, and triglycerides. Isolated peripheral blood mononuclear cells from individuals homozygotic for Cys105 display reduced oxygen consumption rate, diminished expression of some ETC subunits, and decreased levels of some TCA cycle metabolites, which all together derive in mitochondrial dysfunction. Taken together, our study identifies Zc3h10 as a novel mitochondrial regulator.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。