Salviolone from Salvia miltiorrhiza Roots Impairs Cell Cycle Progression, Colony Formation, and Metalloproteinase-2 Activity in A375 Melanoma Cells: Involvement of P21(Cip1/Waf1) Expression and STAT3 Phosphorylation

丹参根中的丹参酮可损害 A375 黑色素瘤细胞的细胞周期进程、菌落形成和金属蛋白酶 2 活性:涉及 P21(Cip1/Waf1)表达和 STAT3 磷酸化

阅读:9
作者:Valentina Zanrè, Rachele Campagnari, Antonietta Cerulli, Milena Masullo, Alessia Cardile, Sonia Piacente, Marta Menegazzi

Abstract

Melanoma is a highly malignant solid tumor characterized by an elevated growth and propagation rate. Since, often, melanoma treatment cannot prevent recurrences and the appearance of metastasis, new anti-melanoma agents need to be discovered. Salvia miltiorrhiza roots are a source of diterpenoid derivatives, natural compounds with several biological activities, including antiproliferative and anticancer effects. Seven diterpenoid derivatives were purified from S. miltiorrhiza roots and identified by NMR and MS analysis. Tanshinone IIA and cryptotanshinone were detected as the main components of S. miltiorrhiza root ethanol extract. Although their antitumor activity is already known, they have been confirmed to induce a reduction in A375 and MeWo melanoma cell growth. Likewise, salviolone has been shown to impair the viability of melanoma cells without affecting the growth of normal melanocytes. The underlying anticancer activity of salviolone has been investigated and compared to that of cryptotanshinone in A375 cells, showing an increased P21 protein expression in a P53-dependent manner. In that way, salviolone, even more than cryptotanshinone, displays a multitarget effect on cell-cycle-related proteins. Besides, it modulates the phosphorylation level of the signal transducer and activator of transcription (STAT)3. Unexpectedly, salviolone and cryptotanshinone induce sustained activation of the extracellular signal-regulated kinases (ERK)1/2 and the protein kinase B (Akt). However, the blockage of ERK1/2 or Akt activities suggests that kinase activation does not hinder their ability to inhibit A375 cell growth. Finally, salviolone and cryptotanshinone inhibit to a comparable extent some crucial malignancy features of A375 melanoma cells, such as colony formation in soft agar and metalloproteinase-2 activity. In conclusion, it has been shown for the first time that salviolone, harboring a different molecular structure than tanshinone IIA and cryptotanshinone, exhibits a pleiotropic effect against melanoma by hampering cell cycle progression, STAT3 signaling, and malignant phenotype of A375 melanoma cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。