Transcriptional analyses of two mouse models of spina bifida

两种脊柱裂小鼠模型的转录分析

阅读:6
作者:Robert M Cabrera, Richard H Finnell, Huiping Zhu, Gary M Shaw, Bogdan J Wlodarczyk

Background

Spina bifida is one of the most common of all human structural birth defects. Despite considerable effort over several decades, the causes and mechanisms underlying this malformation remain poorly characterized.

Methods

To better understand the pathogenesis of this abnormality, we conducted a microarray study using Mouse Whole Genome Bioarrays which have ~36,000 gene targets, to compare gene expression profiles between two mouse models; CXL-Splotch and FKBP8(Gt(neo)) which express a similar spina bifida phenotype. We anticipated that there would be a collection of overlapping genes or shared genetic pathways at the molecular level indicative of a common mechanism underlying the pathogenesis of spina bifida during embryonic development.

Results

A total of 54 genes were determined to be differentially expressed (25 downregulated, 29 upregulated) in the FKBP8Gt((neo)) mouse embryos; whereas 73 genes were differentially expressed (56 downregulated, 17 upregulated) in the CXL-Splotch mouse relative to their wild-type controls. Remarkably, the only two genes that showed decreased expression in both mutants were v-ski sarcoma viral oncogene homolog (Ski), and Zic1, a transcription factor member of the zinc finger family. Confirmation analysis using quantitative real-time (qRT)-PCR indicated that only Zic1 was significantly decreased in both mutants. Gene ontology analysis revealed striking enrichment of genes associated with mesoderm and central nervous system development in the CXL-Splotch mutant embryos, whereas in the FKBP8(Gt(neo)) mutants, the genes involved in dorsal/ventral pattern formation, cell fate specification, and positive regulation of cell differentiation were most likely to be enriched. These results indicate that there are multiple pathways and gene networks perturbed in mouse embryos with shared phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。