Electrospun Scaffolds in Periodontal Wound Healing

电纺支架在牙周伤口愈合中的应用

阅读:6
作者:Mária Budai-Szűcs, Marco Ruggeri, Angela Faccendini, Attila Léber, Silvia Rossi, Gábor Varga, Maria Cristina Bonferoni, Péter Vályi, Katalin Burián, Erzsébet Csányi, Giuseppina Sandri, Franca Ferrari

Abstract

Periodontitis is a set of inflammatory conditions affecting the tissues surrounding the teeth predominantly sustained by bacterial infections. The aim of the work was the design and the development of scaffolds based on biopolymers to be inserted in the periodontal pocket to restore tissue integrity and to treat bacterial infections. Nanofibrous scaffolds were prepared by means of electrospinning. Gelatin was considered as base component and was associated to low and high molecular weight chitosans and alginate. The scaffolds were characterized by chemico-physical properties (morphology, solid state-FTIR and differential scanning calorimetry (DSC)-surface zeta potential and contact angle), and mechanical properties. Moreover, preclinical properties (cytocompatibility, fibroblast and osteoblast adhesion and proliferation and antimicrobial properties) were assessed. All the scaffolds were based on cylindrical and smooth nanofibers and preserved their nanofibrous structure upon hydration independently of their composition. They possessed a high degree of hydrophilicity and negative zeta potentials in a physiological environment, suitable surface properties to enhance cell adhesion and proliferation and to inhibit bacteria attachment. The scaffold based on gelatin and low molecular weight chitosan proved to be effective in vitro to support both fibroblasts and osteoblasts adhesion and proliferation and to impair the proliferation of Streptococcus mutans and Aggregatibacter actinomycetemcomitans, both pathogens involved in periodontitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。