Copper-zinc imbalance induces kidney tubule damage and oxidative stress in a population exposed to chronic environmental cadmium

铜锌失衡导致长期暴露于环境镉的人群肾小管损伤和氧化应激

阅读:10
作者:Sang-Yong Eom, Dong-Hyuk Yim, Mingai Huang, Choong-Hee Park, Guen-Bae Kim, Seung-Do Yu, Byung-Sun Choi, Jung-Duck Park, Yong-Dae Kim, Heon Kim

Conclusions

Essential metal imbalance may be a determinant of oxidative stress and renal tubular damage in a chronically Cd-exposed population, and proper zinc supplementation will be effective in preventing adverse health effects due to Cd exposure.

Methods

We analyzed urinary Cd concentrations, renal tubular damage and oxidative stress markers, such as beta-2 microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) activity and urine malondialdehyde (MDA) levels. The serum copper-to-zinc ratio (CZR) was used as an essential metal imbalance indicator. We divided the subjects into two Cd exposure groups based on the reference level of urinary Cd for renal dysfunction (2 μg/g creatinine).

Purpose

This cross-sectional study aimed to assess the effect of environmental cadmium (Cd) exposure and essential metal imbalance on renal tubular damage and oxidative stress in 979 adults living in a Cd-polluted area near an abandoned copper (Cu) refinery.

Results

The geometric mean concentration of urinary Cd in all subjects was 2.25 μg/g creatinine. In both low and high Cd exposure groups, urinary Cd levels were positively correlated with urinary NAG activity, but not with serum CZR. After multivariate adjustment, serum CZR was strongly associated with urinary β2-MG levels in the low Cd exposure group (β = 1.360, P = 0.019) and was significantly associated with urinary MDA levels, regardless of Cd exposure level. In addition, the risk of renal tubular damage was significantly associated with urinary Cd level, particularly in the lowest or highest CZR tertile groups. Conclusions: Essential metal imbalance may be a determinant of oxidative stress and renal tubular damage in a chronically Cd-exposed population, and proper zinc supplementation will be effective in preventing adverse health effects due to Cd exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。