LncRNA NEAT1 promotes nucleus pulposus cell matrix degradation through regulating Nrf2/ARE axis

LncRNA NEAT1通过调控Nrf2/ARE轴促进髓核细胞基质降解

阅读:7
作者:Cheng Li, Xinjian Ma, Chenfei Ni, Jingyan Xu, Yinfei Xie, Junwei Kan, Xiaoli Wei

Background

This study aimed to assess the role and mechanism of lncRNA NEAT1 in intervertebral disc degeneration (IVD).

Conclusion

Collectively, our data unveiled the lncRNA NEAT1 promotes matrix degradation by regulating Nrf2/ARE signaling pathway, suggesting a potential therapeutic for IVD in the future.

Methods

LncRNA profile (GSE56081) between IVD and healthy control was downloaded from the Gene Expression Omnibus (GEO) database and analyzes differential lncRNA expression. Expression of lncRNA NEAT1 in IVD tissue and TNF-α/IL-1β-stimulated nucleus pulposus cells were further measured by RT-PCR. The lncRNA NEAT1 overexpression plasmids (pcDNA-NEAT1) were constructed and transfected into nucleus pulposus cells. Catabolic biomarkers (MMP-3 and MMP-13), anabolic biomarkers (Col II and Aggrecan) and Nrf2 expression were further measured. To further investigate the function of Nrf2, nucleus pulposus cells were pretreated with or without 25 μM tert-Butylhydroquinone (TBHQ), a Nrf2 activator, for 18 h and subsequently cotreated with pcDNA-NEAT1.

Results

A total of 1432 lncRNAs were differentially expressed in GSE56081. Bioinformatic analysis found that these lncRNAs mainly enriched in Nrf2/ARE signaling pathway. LncRNA NEAT1 was highly expressed in IVD tissues than that of healthy control. Moreover, TNF-α/IL-1β induced a time- and dose-dependent increase in the mRNA expression of lncRNA NEAT1 in the nucleus pulposus cells. Overexpression of lncRNA NEAT1 abates promotes nucleus pulposus cells proliferation but induces matrix degradation. Meanwhile, nucleus and cytoplasm Nrf2 expression was significantly down-regulated by lncRNA NEAT1 upregulation. Nrf2 activator (TBHQ) could partially reverse the inhibitory effects of overexpression of lncRNA NEAT1 on matrix degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。