Cross-regulation by TLR4 and T cell Ig mucin-3 determines severity of liver injury in a CCl4-induced mouse model

TLR4 和 T 细胞免疫球蛋白粘蛋白-3 的交叉调节决定了 CCl4 诱导的小鼠模型中肝损伤的严重程度

阅读:7
作者:Lizhen Zhao, Jie Liang, Wei Rao, Mengli Cui, Shurong Ren, Li Zhang, Dan Xu, Qi Han, Yun-Jin Zang, Bei Zhang

Abstract

Acute liver injury is a common pathological basis for a variety of acute liver diseases in the clinic, which can eventually lead to liver fibrosis and even liver failure. In this study, we found that T cell Ig and mucin domain protein 3 (Tim-3) and TLR4 receptors play important roles in CCl4-induced acute liver injury. Tim-3 is a negative regulator that is expressed by T cells and macrophages. Using antibodies against Tim-3 (anti-Tim-3 Ab), we studied the Tim-3 signal in an animal model of acute liver injury and found that a large number of inflammatory factors were upregulated. In vitro experimental data shown that anti-Tim-3 Ab treatment increased interferon-ɣ production by concanavalin A (ConA)-stimulated spleen T cells, and we found that the expression level of interleukin (IL)-6 was increased in a macrophage/spleen T cell coculture system, while administration of galectin-9 (Gal-9, a Tim-3 ligand) reduced the IL-6 production. This indicates the importance of the Tim-3/Gal-9 signalling pathway in maintaining hepatic homeostasis. The Tim-3 signalling pathway inhibits TLR4-mediated NF-κB activity, and an anti-Tim-3 Ab does not affect the liver injury in TLR4-deficient mice. Regulation between Tim-3 and TLR4 determines the severity of liver damage. The negative regulation of Tim-3 reflects the protective mechanisms of patients with impaired liver function, and these results provide important information about innate and adaptive responses in the regulation of liver damage. This finding is potentially important for the study of early liver injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。