Renal AAV2-Mediated Overexpression of Long Non-Coding RNA H19 Attenuates Ischemic Acute Kidney Injury Through Sponging of microRNA-30a-5p

肾脏 AAV2 介导的长链非编码 RNA H19 过表达通过吸收 microRNA-30a-5p 减轻缺血性急性肾损伤

阅读:4
作者:George Haddad, Malte Kölling, Urs A Wegmann, Angela Dettling, Harald Seeger, Roland Schmitt, Inga Soerensen-Zender, Hermann Haller, Andreas D Kistler, Anne Dueck, Stefan Engelhardt, Thomas Thum, Thomas F Mueller, Rudolf P Wüthrich, Johan M Lorenzen

Background

Renal ischemia-reperfusion (I/R) injury is a major cause of AKI. Noncoding RNAs are intricately involved in the pathophysiology of this form of AKI. Transcription of hypoxia-induced, long noncoding RNA H19, which shows high embryonic expression and is silenced in adults, is upregulated in renal I/R injury.

Conclusions

H19 overexpression confers protection against renal injury by stimulating proangiogenic signaling. H19 overexpression may be a promising future therapeutic option in the treatment of patients with ischemic AKI.

Methods

Lentivirus-mediated overexpression, as well as antisense oligonucleotide-based silencing, modulated H19 in vitro. In vivo analyses used constitutive H19 knockout mice. In addition, renal vein injection of adeno-associated virus 2 (AAV2) carrying H19 caused overexpression in the kidney. Expression of H19 in kidney transplant patients with I/R injury was investigated.

Results

H19 is upregulated in kidney biopsies of patients with AKI, in murine ischemic kidney tissue, and in cultured and ex vivo sorted hypoxic endothelial cells (ECs) and tubular epithelial cells (TECs). Transcription factors hypoxia-inducible factor 1-α, LHX8, and SPI1 activate H19 in ECs and TECs. H19 overexpression promotes angiogenesis in vitro and in vivo. In vivo, transient AAV2-mediated H19 overexpression significantly improved kidney function, reduced apoptosis, and reduced inflammation, as well as preserving capillary density and tubular epithelial integrity. Sponging of miR-30a-5p mediated the effects, which, in turn, led to target regulation of Dll4, ATG5, and Snai1. Conclusions: H19 overexpression confers protection against renal injury by stimulating proangiogenic signaling. H19 overexpression may be a promising future therapeutic option in the treatment of patients with ischemic AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。