Polyimide-Derived Supramolecular Systems Containing Various Amounts of Azochromophore for Optical Storage Uses

含不同量偶氮发色团的聚酰亚胺衍生超分子体系用于光学存储

阅读:5
作者:Andreea Irina Barzic, Ion Sava, Raluca Marinica Albu, Cristian Ursu, Gabriela Lisa, Iuliana Stoica

Abstract

The progress of digital technologies demands more speed and larger storage capacity. Optical storage systems have the advantage of being cheap, fast and capacious. This article explores the potential use of polyimide-based films as a recording medium for optical storage devices. The materials were designed through a host-guest approach that involves a cyano-containing polyimide precursor and an azochromophore combined in the following ratios: 1:0.25, 1:0.5, 1:0.75 and 1:1. After thermal treatment up to 200 °C, polyimide systems were formed with supramolecular structures constructed via hydrogen bonding as shown by molecular modeling and FTIR at around 3350 cm-1. The aspects arising from the variation of the azo-dye content in the polyimide samples and their impact on the vitrification temperature, colorimetric features, refractive index, band gap, non-linear optical susceptibility and birefringence were investigated for the first time. The thermal analysis indicated a slight decrease in the vitrification temperature from 190.84 °C for the sample without azo dye to 163.91 °C for the film containing the highest leading of azo dye. The morphology images revealed the occurrence of periodic structures in azo-derived materials exposed to a UV laser, which is accentuated by the addition of more azo dye molecules. Optical tests allowed observation of the increase in the dominant wavelength, refractivity and optical conductivity of the samples, produced by the incorporation of azochromophore and laser irradiation. The photo-generated birefringence increased from 0.014 (sample with 1:0.25) to 0.036 (sample with 1:1), which in combination with the created regular topography pattern, is essential for the use of these materials as recording media in optical storage applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。