Identifying lncRNAs and mRNAs related to survival of NSCLC based on bioinformatic analysis and machine learning

基于生物信息学分析和机器学习识别与NSCLC生存相关的lncRNA和mRNA

阅读:12
作者:Wei Yue, Jing Wang, Bo Lin, Yongping Fu

Abstract

Non-small cell lung cancer (NSCLC) is the most common histopathological type, and it is purposeful for screening potential prognostic biomarkers for NSCLC. This study aims to identify the lncRNAs and mRNAs related to survival of non-small cell lung cancer (NSCLC). The expression profile data of lung adenocarcinoma and lung squamous cell carcinoma were downloaded in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset. A total of eight survival related long non-coding RNAs (lncRNAs) and 262 survival related mRNAs were filtered. By gene set enrichment analysis, 17 significantly correlated Gene Ontology signal pathways and 14 Kyoto Encyclopedia of Genes and Genomes signal pathways were screened. Based on the clinical survival and prognosis information of the samples, we screened eight lncRNAs and 193 mRNAs by single factor Cox regression analysis. Further single and multifactor Cox regression analysis were performed, 30 independent prognostication-related mRNAs were obtained. The PPI network was further constructed. We then performed the machine learning algorithms (Least absolute shrinkage and selection operator, Recursive feature elimination, and Random forest) to screen the optimized DEGs combination, and a total of 17 overlapping mRNAs were obtained. Based on the 17 characteristic mRNAs obtained, we firstly built a Nomogram prediction model, and the ROC values of training set and testing set were 0.835 and 0.767, respectively. By overlapping the 17 characteristic mRNAs and PPI network hub genes, three genes were obtained: CDC6, CEP55, TYMS, which were considered as key factors associated with survival of NSCLC. The in vitro experiments were performed to examine the effect of CDC6, CEP55, and TYMS on NSCLC cells. Finally, the lncRNAs-mRNAs networks were constructed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。