Role of lysine residues of the Magnaporthe oryzae effector AvrPiz-t in effector- and PAMP-triggered immunity

稻瘟病菌效应物 AvrPiz-t 赖氨酸残基在效应物和 PAMP 引发的免疫中的作用

阅读:5
作者:Pengfei Bai, Chan-Ho Park, Gautam Shirsekar, Pattavipha Songkumarn, Maria Bellizzi, Guo-Liang Wang

Abstract

Magnaporthe oryzae is an important fungal pathogen of both rice and wheat. However, how M. oryzae effectors modulate plant immunity is not fully understood. Previous studies have shown that the M. oryzae effector AvrPiz-t targets the host ubiquitin-proteasome system to manipulate plant defence. In return, two rice ubiquitin E3 ligases, APIP6 and APIP10, ubiquitinate AvrPiz-t for degradation. To determine how lysine residues contribute to the stability and function of AvrPiz-t, we generated double (K1,2R-AvrPiz-t), triple (K1,2,3R-AvrPiz-t) and lysine-free (LF-AvrPiz-t) mutants by mutating lysines into arginines in AvrPiz-t. LF-AvrPiz-t showed the highest protein accumulation when transiently expressed in rice protoplasts. When co-expressed with APIP10 in Nicotiana benthamiana, LF-AvrPiz-t was more stable than AvrPiz-t and was less able to degrade APIP10. The avirulence of LF-AvrPiz-t on Piz-t:HA plants was less than that of AvrPiz-t, which led to resistance reduction and lower accumulation of the Piz-t:HA protein after inoculation with the LF-AvrPiz-t-carrying isolate. Chitin- and flg22-induced production of reactive oxygen species (ROS) was higher in LF-AvrPiz-t than in AvrPiz-t transgenic plants. In addition, LF-AvrPiz-t transgenic plants were less susceptible than AvrPiz-t transgenic plants to a virulent isolate. Furthermore, both AvrPiz-t and LF-AvrPiz-t interacted with OsRac1, but the suppression of OsRac1-mediated ROS generation by LF-AvrPiz-t was significantly lower than that by AvrPiz-t. Together, these results suggest that the lysine residues of AvrPiz-t are required for its avirulence and virulence functions in rice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。