Bacillus anthracis edema toxin activates nuclear glycogen synthase kinase 3beta

炭疽芽孢杆菌水肿毒素激活核糖原合酶激酶 3beta

阅读:7
作者:Jason L Larabee, Kevin DeGiusti, James L Regens, Jimmy D Ballard

Abstract

Bacillus anthracis edema toxin (ET) generates high levels of cyclic AMP and impacts a complex network of signaling pathways in targeted cells. In the current study, we sought to identify kinase signaling pathways modulated by ET to better understand how this toxin alters cell physiology. Using a panel of small-molecule inhibitors of mammalian kinases, we found that inhibitors of glycogen synthase kinase 3 beta (GSK-3beta) protected cells from ET-induced changes in the cell cycle. GSK-3beta inhibitors prevented declines in cellular levels of cyclin D1 and c-Jun following treatment of macrophages with ET. Strikingly, cell fractionation experiments and confocal immunofluorescence microscopy revealed that ET activates a compartmentalized pool of GSK-3beta residing in the nuclei, but not in the cytoplasm, of macrophages. To investigate the outcome of this event, we examined the cellular location and activation state of beta-catenin, a critical substrate of GSK-3beta, and found that the protein was inactivated within the nucleus following intoxication with ET. To determine if ET could overcome the effects of stimuli that inactivate GSK-3beta, we examined the impact of the toxin on the Wnt signaling pathway. The results of these experiments revealed that by targeting GSK-3beta residing in the nucleus, ET circumvents the upstream cytoplasmic inactivation of GSK-3beta, which occurs following exposure to Wnt-3A. These findings suggest ET arrests the cell cycle by a mechanism involving activation of GSK-3beta residing in the nucleus, and by using this novel mechanism of intoxication, ET avoids cellular systems that would otherwise reverse the effects of the toxin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。