Antiviral Activity of Micafungin and Its Derivatives against SARS-CoV-2 RNA Replication

米卡芬净及其衍生物对 SARS-CoV-2 RNA 复制的抗病毒活性

阅读:7
作者:Shogo Nakajima, Hirofumi Ohashi, Daisuke Akazawa, Shiho Torii, Rigel Suzuki, Takasuke Fukuhara, Koichi Watashi

Abstract

Echinocandin antifungal drugs, including micafungin, anidulafungin, and caspofungin, have been recently reported to exhibit antiviral effects against various viruses such as flavivirus, alphavirus, and coronavirus. In this study, we focused on micafungin and its derivatives and analyzed their antiviral activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The micafungin derivatives Mi-2 and Mi-5 showed higher antiviral activity than micafungin, with 50% maximal inhibitory concentration (IC50) of 5.25 and 6.51 µM, respectively (3.8 to 4.7-fold stronger than micafungin) and 50% cytotoxic concentration (CC50) of >64 µM in VeroE6/TMPRSS2 cells. This high anti-SARS-CoV-2 activity was also conserved in human lung epithelial cell-derived Calu-3 cells. Micafungin, Mi-2, and Mi-5 were suggested to inhibit the intracellular virus replication process; additionally, these compounds were active against SARS-CoV-2 variants, including Delta (AY.122, hCoV-19/Japan/TY11-927/2021), Omicron (BA.1.18, hCoV-19/Japan/TY38-873/2021), a variant resistant to remdesivir (R10/E796G C799F), and a variant resistant to casirivimab/imdevimab antibody cocktail (E406W); thus, our results provide basic evidence for the potential use of micafungin derivatives for developing antiviral agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。