S-oxiracetam Facilitates Cognitive Restoration after Ischemic Stroke by Activating α7nAChR and the PI3K-Mediated Pathway

S-奥拉西坦通过激活 α7nAChR 和 PI3K 介导的通路促进缺血性中风后的认知恢复

阅读:8
作者:Wenxiang Fan, Ying Zhang, Xiaomin Li, Chi Xu

Abstract

S-oxiracetam (S-ORC), a nootropic drug, was used to protect against ischemic stroke by lessening the blood brain barrier dysfunction and inhibiting neuronal apoptosis. However, the potential effects of S-ORC in the recovery of cognitive functions after ischemic stroke and the underlying mechanisms remains unclear. In this study, middle cerebral artery occlusion/reperfusion (MCAO/R) in rats was used as the animal model. By using Y-maze test, Morris water maze, triphenyl tetrazolium chloride (TTC) staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTp) nick end labeling (TUNEL) assay, hematoxylin and eosin, immunohistochemical staining and western blot to evaluate the protective effect of S-ORC on cognitive recovery, we were able to confirm that S-ORC ameliorated spatial learning impairment, tissue loss, and hippocampal neuronal apoptosis and injury induced by MCAO/R in rats. These cognitive effects were achieved by restoring the normal function of synaptophysin and increasing PSD95 expression in the hippocampus. Furthermore, we found that methyllycaconitine, the antagonist of α7 nicotinic acetylcholine receptor (α7nAChR), and LY294002, the inhibitor of phosphoinositide 3-kinase (PI3K), were able to block the cognitive effects of S-ORC after MCAO/R in rats. In conclusion, α7nAChR and PI3K are key molecules that mediated the signaling pathway leading to S-ORC-induced cognitive restoration after MCAO/R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。