Forced enhancer-promoter rewiring to alter gene expression in animal models

强制增强子-启动子重组以改变动物模型中的基因表达

阅读:7
作者:Scott A Peslak, Selami Demirci, Vemika Chandra, Byoung Ryu, Saurabh K Bhardwaj, Jing Jiang, Jeremy W Rupon, Robert E Throm, Naoya Uchida, Alexis Leonard, Khaled Essawi, Aylin C Bonifacino, Allen E Krouse, Nathaniel S Linde, Robert E Donahue, Francesca Ferrara, Matthew Wielgosz, Osheiza Abdulmalik, N

Abstract

Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the β-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) β-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the β-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human β-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。