Pharmacological Ischemic Conditioning with Roxadustat Does Not Affect Pain-Like Behaviors but Mitigates Sudomotor Impairment in a Murine Model of Deep Hind Paw Incision

使用罗沙司他进行药物缺血调节不会影响疼痛样行为,但可以减轻小鼠深后爪切口模型中的汗腺运动障碍

阅读:8
作者:Fanglin Lu, Jungo Kato, Tomoko Toramaru, Mengting Zhang, Hiroshi Morisaki

Conclusion

This study suggests that tissue hypoxia is involved in the pathogenesis of local sudomotor dysfunction associated with surgical trauma. Targeting the hypoxic response mechanisms with PIC may be of therapeutic potential in postsurgical local sympathetic impairments that can be present in complex regional pain syndrome.

Methods

Male BALB/cAJcl mice aged 9-13 weeks were used in all experiments. Plantar skins of mice that underwent surgical incision were subjected to immunohistochemistry to localise tissue hypoxia. Pain-like behaviours and sudomotor function were compared between mice treated with 6-week perioperative PIC and control mice. The effects of PIC were examined in vitro by immunocytochemistry using sympathetically differentiated PC12 cells and in vivo by immunohistochemistry using plantar skins collected on postoperative day 21.

Purpose

The involvement of hypoxic response mechanisms in local functional impairments in surgical wounds is unclear. In the present study, we characterized tissue hypoxia in surgical wounds and investigated the role of pharmacological ischemic conditioning (PIC) using roxadustat, an oral prolyl hydroxylase domain enzyme inhibitor, in postoperative local functional impairments in a murine model of deep hind paw incision.

Results

Prominent tissue hypoxia was detected within axons in the nerve bundles underneath surgical wounds. Six-week perioperative PIC using roxadustat failed to ease spontaneous pain-like behaviors; however, it mitigated local sudomotor impairment postoperatively. Upregulation of sympathetic innervation to the eccrine glands was observed in the PIC-treated skins collected on postoperative day 21, in accordance with the in vitro study wherein roxadustat promoted neurite growth of sympathetically differentiated PC12 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。