Kynurenine, a Tryptophan Metabolite That Increases with Age, Induces Muscle Atrophy and Lipid Peroxidation

犬尿氨酸是一种色氨酸代谢物,会随着年龄的增长而增加,诱发肌肉萎缩和脂质过氧化

阅读:7
作者:Helen Kaiser, Kanglun Yu, Chirayu Pandya, Bharati Mendhe, Carlos M Isales, Meghan E McGee-Lawrence, Maribeth Johnson, Sadanand Fulzele, Mark W Hamrick

Abstract

The cellular and molecular mechanisms underlying loss of muscle mass with age (sarcopenia) are not well-understood; however, heterochronic parabiosis experiments show that circulating factors are likely to play a role. Kynurenine (KYN) is a circulating tryptophan metabolite that is known to increase with age and is a ligand of the aryl hydrocarbon receptor (Ahr). Here, we tested the hypothesis that KYN activation of Ahr plays a role in muscle loss with aging. Results indicate that KYN treatment of mouse and human myoblasts increased levels of reactive oxygen species (ROS) 2-fold and KYN treatment in vivo reduced muscle size and strength and increased muscle lipid peroxidation in young mice. PCR array data indicate that muscle fiber size reduction with KYN treatment reduces protein synthesis markers whereas ubiquitin ligase gene expression is not significantly increased. KYN is generated by the enzyme indoleamine 2,3-dioxygenase (IDO), and aged mice treated with the IDO inhibitor 1-methyl-D-tryptophan showed an increase in muscle fiber size and muscle strength. Small-molecule inhibition of Ahr in vitro, and Ahr knockout in vivo, did not prevent KYN-induced increases in ROS, suggesting that KYN can directly increase ROS independent of Ahr activation. Protein analysis identified very long-chain acyl-CoA dehydrogenase as a factor activated by KYN that may increase ROS and lipid peroxidation. Our data suggest that IDO inhibition may represent a novel therapeutic approach for the prevention of sarcopenia and possibly other age-associated conditions associated with KYN accumulation such as bone loss and neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。