CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma

CircOMA1 通过下调催乳素瘤中的铁死亡来调节卡麦角林耐药性

阅读:7
作者:N Wu #, D Zhu #, J Li, X Li, Z Zhu, Q Rao, B Hu, H Wang, Y Zhu

Conclusion

The present study demonstrates that circOMA1 attenuates CAB efficacy through ferroptosis resistance and may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.

Methods

The expression of circOMA1 in prolactinoma tissues was examined by quantitative reverse transcription PCR (qRT-PCR). The biological function of circOMA1 was evaluated in vitro and in vivo. To explore the role of ferroptosis in prolactinoma, we used qRT-PCR and western blotting. Glutamate-cysteine ligase, modifier subunit (GCLM) was predicted to be a direct target gene of miR-145-5p by bioinformatics analysis, which was confirmed by luciferase reporter assays.

Purpose

Prolactinomas are one of the most common pituitary neuroendocrine tumors (PitNETs), accounting for approximately 50% of all pituitary tumors. Dopamine agonists are the main treatment for prolactinoma, but a small number of patients are still resistant to pharmacotherapy. Recent discoveries have revealed that ferroptosis is involved in regulating tumor drug resistance. However, the role of ferroptosis in prolactinoma has not been reported. In this study, we aimed to explore the mechanism of a circRNA in ferroptosis in prolactinoma.

Results

circOMA1 was overexpressed in drug-resistant prolactinoma tissues compared with sensitive prolactinoma samples. We further found that circOMA1 promoted MMQ cells growth in vivo and in vitro. In addition, GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and xCT, and circOMA1 attenuated CAB-induced ferroptosis in MMQ cells in vivo and in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。