An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors

基于 MRI 的分类方案,用于预测 5 至 50 纳米大纳米粒子被动进入肿瘤的情况

阅读:7
作者:Anastassia Karageorgis, Sandrine Dufort, Lucie Sancey, Maxime Henry, Samuli Hirsjärvi, Catherine Passirani, Jean-Pierre Benoit, Julien Gravier, Isabelle Texier, Olivier Montigon, Mériem Benmerad, Valérie Siroux, Emmanuel L Barbier, Jean-Luc Coll

Abstract

Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。