Mice lacking α1,3-fucosyltransferase 9 exhibit modulation of in vivo immune responses against pathogens

缺乏 α1,3-岩藻糖基转移酶 9 的小鼠表现出对体内病原体免疫反应的调节

阅读:5
作者:Hiromi Kashiwazaki, Masatoshi Kakizaki, Yuzuru Ikehara, Akira Togayachi, Hisashi Narimatsu, Rihito Watanabe

Abstract

Carbohydrate structures, including Lewis X (Le(x)), which is not synthesized in mutant mice that lack α1,3-fucosyltransferase 9 (Fut9(-/-)), are involved in cell-cell recognition and inflammation. However, immunological alteration in Fut9(-/-) mice has not been studied. Thus, the inflammatory response of Fut9(-/-) mice was examined using the highly neurovirulent mouse hepatitis virus (MHV) JHMV srr7 strain. Pathological study revealed that inflammation induced in the brains of Fut9(-/-) mice after infection was more extensive compared with that of wild-type mice, although viral titers obtained from the brains of mutant mice were lower than those of wild-type mice. Furthermore, the reduction in cell numbers in the spleens of wild-type mice after infection was not observed in the infected Fut9(-/-) mice. Although there were no clear differences in the levels of cytokines examined in the brains between Fut9(-/-) and wild-type mice except for interferon-β expression, some of those in the spleens, including interferon-γ, interleukin-6, and monocyte chemoattractant protein 1, showed higher levels in Fut9(-/-) than in wild-type mice. Furthermore, Fut9(-/-) mice were refractory to the in vivo inoculation of endotoxin (LPS) compared with wild-type mice. These results indicate that Le(x) structures are involved in host responses against viral or bacterial challenges.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。