The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development

KRAB-ZFP/KAP1 系统有助于早期胚胎建立在发育过程中维持的位点特异性 DNA 甲基化模式

阅读:11
作者:Simon Quenneville, Priscilla Turelli, Karolina Bojkowska, Charlène Raclot, Sandra Offner, Adamandia Kapopoulou, Didier Trono

Abstract

De novo DNA methylation is an essential aspect of the epigenetic reprogramming that takes place during early development, yet factors responsible for its instatement at particular genomic loci are poorly defined. Here, we demonstrate that the KRAB-ZFP-mediated recruitment of KAP1 to DNA in embryonic stem cells (ESCs) induces cytosine methylation. This process is preceded by H3K9 trimethylation, and genome-wide analyses reveal that it spreads over short distances from KAP1-binding sites so as to involve nearby CpG islands. In sharp contrast, in differentiated cells, KRAB/KAP1-induced heterochromatin formation does not lead to DNA methylation. Correspondingly, the methylation status of CpG islands in the adult mouse liver correlates with their proximity to KAP1-binding sites in ESCs, not in hepatocytes. Therefore, KRAB-ZFPs and their cofactor KAP1 are in part responsible for the establishment during early embryogenesis of site-specific DNA methylation patterns that are maintained through development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。