Neuropathological investigation of patients with prolonged anorexia nervosa

长期神经性厌食症患者的神经病理学研究

阅读:10
作者:Ito Kawakami, Shuji Iritani, Yuichi Riku, Kentaro Umeda, Mina Takase, Kenji Ikeda, Kazuhiro Niizato, Tomio Arai, Mari Yoshida, Kenichi Oshima, Masato Hasegawa

Conclusion

Our findings suggest impaired dopaminergic innervation between the NAcc and VTA in AN. Functional dysconnectivity in the reward-related network might induce neuropsychiatric symptoms associated with AN.

Methods

The neuronal networks in AN cases and controls were examined by immunohistochemistry directed at tyrosine hydroxylase (TH; dopaminergic neuron marker) and glial fibrillary acidic protein (GFAP; astrocyte marker). We also immunochemically analyzed frozen samples presenting astrogliosis, especially in the NAcc and striatum.

Results

Histologically, neuronal deformation with cytoplasmic shrinkage was seen in reward-related brain regions, such as the orbitofrontal cortex/anterior cingulate cortex. The NAcc showed massive GFAP-positive astrocytes and dot-like protrusions of astrocytes in the shell compartment. In the shell, TH and GFAP immunoreactivities revealed prominent astrogliosis within striosomes, which receive projection from the ventral tegmental area (VTA). The numbers of GFAP-positive astrocytes in the NAcc (P = 0.0079) and VTA (P = 0.0025) of AN cases were significantly higher than those of controls. Strongly immunoreactive 18 to 25 kDa bands, which might represent degradation products, were detected only in the NAcc of AN cases. Clinically, all cases presented cognitive rigidity, which might reflect a deficit of the reward pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。