Neuroanatomical characterization of imidazoline I2 receptor agonist-induced antinociception

咪唑啉 I2 受体激动剂诱导的镇痛作用的神经解剖学特征

阅读:6
作者:Justin N Siemian, Shushan Jia, Jian-Feng Liu, Yanan Zhang, Jun-Xu Li

Abstract

Chronic pain is a significant public health problem with a lack of safe and effective analgesics. The imidazoline I2 receptor (I2 R) is a promising analgesic target, but the neuroanatomical structures involved in mediating I2 R-associated behaviors are unknown. I2 Rs are enriched in the arcuate nucleus, dorsal raphe (DR), interpeduncular nucleus, lateral mammillary body, medial habenula, nucleus accumbens (NAc) and paraventricular nucleus; thus, this study investigated the antinociceptive and hypothermic effects of microinjections of the I2 R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI). In rats, intra-DR microinjections produced antinociception in complete Freund's adjuvant- and chronic constriction injury-induced pain models. Intra-NAc microinjections produced antinociception and increased noxious stimulus-associated side time in a place escape/avoidance paradigm. Intra-NAc pretreatment with the I2 R antagonist idazoxan but not the D1 receptor antagonist SCH23390 or the D2 receptor antagonist raclopride attenuated intra-NAc 2-BFI-induced antinociception. Intra-NAc idazoxan did not attenuate systemically administered 2-BFI-induced antinociception. Microinjections into the other regions did not produce antinociception, and in none of the regions produced hypothermia. These data suggest that I2 R activation in some but not all I2 R-enriched brain regions is sufficient to produce antinociception and supports the theory that different I2 R-associated effects are mediated via distinct receptor populations, which may in turn be distributed differentially throughout the CNS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。