Control of epigenetic states by WT1 via regulation of de novo DNA methyltransferase 3A

WT1 通过调节从头 DNA 甲基转移酶 3A 来控制表观遗传状态

阅读:7
作者:Marianna Szemes, Anthony R Dallosso, Zsombor Melegh, Thomas Curry, Yifan Li, Caroline Rivers, James Uney, Ann-Sophie Mägdefrau, Karolin Schwiderski, Ji H Park, Keith W Brown, Jayasha Shandilya, Stefan G E Roberts, Karim Malik

Abstract

Although tumour suppressor gene hypermethylation is a universal feature of cancer cells, little is known about the necessary molecular triggers. Here, we show that Wilms' tumour 1 (WT1), a developmental master regulator that can also act as a tumour suppressor or oncoprotein, transcriptionally regulates the de novo DNA methyltransferase 3A (DNMT3A) and that cellular WT1 levels can influence DNA methylation of gene promoters genome-wide. Specifically, we demonstrate that depletion of WT1 by short-interfering RNAs leads to reduced DNMT3A in Wilms' tumour cells and human embryonal kidney-derived cell lines. Chromatin immunoprecipitation assays demonstrate WT1 recruitment to the DNMT3A promoter region and reporter assays confirm that WT1 directly transactivates DNMT3A expression. Consistent with this regulatory role, immunohistochemical analysis shows co-expression of WT1 and DNMT3A proteins in nuclei of blastemal cells in human fetal kidney and Wilms' tumours. Using genome-wide promoter methylation arrays, we show that human embryonal kidney cells over-expressing WT1 acquire DNA methylation changes at specific gene promoters where DNMT3A recruitment is increased, with hypermethylation being associated with silencing of gene expression. Elevated DNMT3A is also demonstrated at hypermethylated genes in Wilms' tumour cells, including a region of long-range epigenetic silencing. Finally, we show that depletion of WT1 in Wilms' tumour cells can lead to reactivation of gene expression from methylated promoters, such as TGFB2, a key modulator of epithelial-mesenchymal transitions. Collectively, our work defines a new regulatory modality for WT1 involving elicitation of epigenetic alterations which is most likely crucial to its functions in development and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。