Trastuzumab/pertuzumab combination therapy stimulates antitumor responses through complement-dependent cytotoxicity and phagocytosis

曲妥珠单抗/帕妥珠单抗联合治疗通过补体依赖性细胞毒性和吞噬作用刺激抗肿瘤反应

阅读:4
作者:Li-Chung Tsao, Erika J Crosby, Timothy N Trotter, Junping Wei, Tao Wang, Xiao Yang, Amanda N Summers, Gangjun Lei, Christopher A Rabiola, Lewis A Chodosh, William J Muller, Herbert Kim Lyerly, Zachary C Hartman

Abstract

Two HER2-specific mAbs, trastuzumab and pertuzumab (T+P), combined with chemotherapy comprise standard-of-care treatment for advanced HER2+ breast cancers (BC). While this antibody combination is highly effective, its synergistic mechanism-of-action (MOA) remains incompletely understood. Past studies have suggested that the synergy underlying this combination occurs through the different mechanisms elicited by these antibodies, with pertuzumab suppressing HER2 heterodimerization and trastuzumab inducing antitumor immunity. However, in vivo evidence for this synergy is lacking. In this study, we found that the therapeutic efficacy elicited by their combination occurs through their joint ability to activate the classical complement pathway, resulting in both complement-dependent cytotoxicity and complement-dependent cellular phagocytosis of HER2+ tumors. We also demonstrate that tumor C1q expression is positively associated with survival outcome in HER2+ BC patients and that complement regulators CD55 and CD59 were inversely correlated with outcome, suggesting the clinical importance of complement activity. Accordingly, inhibition of C1q in mice abolished the synergistic therapeutic activity of T+P therapy, whereas knockdown of CD55 and CD59 expression enhanced T+P efficacy. In summary, our study identifies classical complement activation as a significant antitumor MOA for T+P therapy that may be functionally enhanced to potentially augment clinical therapeutic efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。