Inhibition of γ/β Globin Gene Switching in CD 34+ Derived Erythroid Cells by BCL11A RNA Silencing

BCL11A RNA 沉默抑制 CD 34+ 衍生红系细胞中的 γ/β 珠蛋白基因转换

阅读:4
作者:Seyyed Asadallah Taghavi, Kamran Mousavi Hosseini, Gholamhossein Tamaddon, Leila Kasraian

Abstract

The induction of fetal haemoglobin (Hb F), due to the sustained clinical effects, is one of the most promising methods for the treatment of β hemoglobinopathies, such as thalassemia major and sickle cell disease (SCD). Inhibition of γ-globin gene silencing, possibly is a suitable strategy to induce HbF expression in these patients. In this study, the possibility of increasing HbF in the CD34+ derived erythroid cells was investigated by BCL11A inhibition using specific small-interfering RNAs (siRNAs). Human peripheral blood-derived hematopoietic stem cells were isolated and differentiated to erythroid cells. Erythroid maturation was investigated using cell morphology parameters and flow cytometry analysis of CD235a expression On day 20, siRNA complementary to BCL11A was transfected to differentiating cells via electroporation. BCL11A expression was evaluated through real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme linked immunosorbant assay (ELISA). β actin was used as the reference gene to confirm the relative expression level of BCL11A gene mRNA. 48 hours after transfection, BCL11A siRNA significantly reduced BCL11A mRNA levels and consequently led to 2.0 fold decrease in corresponding protein. On the 28th day, haemoglobin electrophoresis results showed that Hb F levels in transfected erythroid cells increased 3.3-fold when compared with non transfected cells. In this study we showed that BCL11A inhibition in erythroid cells could increase fetal hemoglobin, and this strategy can be the basis for designing a γ globin expressing cellular system to increase Hb F in patients with thalassemia and SCD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。