Structural and Morphological Properties of Wool Keratin and Cellulose Biocomposites Fabricated Using Ionic Liquids

利用离子液体制备的羊毛角蛋白和纤维素生物复合材料的结构和形态特性

阅读:5
作者:Karleena Rybacki, Stacy A Love, Bailey Blessing, Abneris Morales, Emily McDermott, Kaylyn Cai, Xiao Hu, David Salas-de la Cruz

Abstract

In this study, the structural, thermal, and morphological properties of biocomposite films composed of wool keratin mixed with cellulose and regenerated with ionic liquids and various coagulation agents were characterized and explored. These blended films exhibit different physical and thermal properties based on the polymer ratio and coagulation agent type in the fabrication process. Thus, understanding their structure and molecular interaction will enable an understanding of how the crystallinity of cellulose can be modified in order to understand the formation of protein secondary structures. The thermal, morphological, and physiochemical properties of the biocomposites were investigated by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and X-ray scattering. Analysis of the results suggests that both the wool keratin and the cellulose structures can be manipulated during dissolution and regeneration. Specifically, the β-sheet content in wool keratin increases with the increase of the ethanol solution concentration during the coagulation process; likewise, the cellulose crystallinity increases with the increase of the hydrogen peroxide concentration via coagulation. These findings suggest that the different molecular interactions in a biocomposite can be tuned systematically. This can lead to developments in biomaterial research including advances in natural based electrolyte batteries, as well as implantable bionics for medical research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。