Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay

蛋白质组学分析揭示无义介导的 mRNA 衰变对未折叠蛋白质反应的分支特异性调控

阅读:5
作者:Jana Sieber, Christian Hauer, Madhuri Bhuvanagiri, Stefan Leicht, Jeroen Krijgsveld, Gabriele Neu-Yilik, Matthias W Hentze, Andreas E Kulozik

Abstract

Nonsense-mediated mRNA decay (NMD) has originally been described as a surveillance mechanism to inhibit the expression of mRNAs with truncated open reading frames (ORFs) and to contribute to the fidelity of gene expression. It is now recognized that NMD also controls the expression of physiological genes with "intact" mRNA. Stress can decrease NMD efficiency and thus increase the mRNA levels of physiological NMD targets. As stress can also inhibit translation, the net outcome for shaping the proteome is difficult to predict. We have thus analyzed de novo protein synthesis in response to NMD inhibition or the induction of mild endoplasmic reticulum (ER) stress by treatment of cells with the reducing agent dithiotreitol (DTT). For this purpose, we combined pulsed azidohomoalanine (AHA) and stable isotope labeling by amino acids in cell culture (SILAC). Labeled proteins were purified by click chemistry-based covalent coupling to agarose beads, trypsinized, fractionated, and analyzed by mass spectrometry (MS). We find that mild ER stress up-regulates the de novo synthesis of components of all three branches of the unfolded protein response (PERK, IRE1 and ATF6) without increasing eIF2α phosphorylation or impairing of protein translation. In contrast, inhibition of NMD induces de novo protein synthesis of downstream targets of the PERK and IRE1 pathways, whereas we could not detect regulation of ATF6-responsive genes. These data thus support a model that implicates a positive feedback loop of ER stress inhibiting NMD efficiency which further promotes the ER stress response in a branch-specific manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。