Artificial intelligence-based models for the qualitative and quantitative prediction of a phytochemical compound using HPLC method

使用 HPLC 方法定性和定量预测植物化学化合物的人工智能模型

阅读:7
作者:Abdullahi Garba Usman, Selin IŞik, Sani Isah Abba, Filiz MerİÇlİ

Abstract

Isoquercitrin is a flavonoid chemical compound that can be extracted from different plant species such as Mangifera indica (mango), Rheum nobile , Annona squamosal , Camellia sinensis (tea), and coriander ( Coriandrum sativum L.). It possesses various biological activities such as the prevention of thromboembolism and has anticancer, antiinflammatory, and antifatigue activities. Therefore, there is a critical need to elucidate and predict the qualitative and quantitative properties of this phytochemical compound using the high performance liquid chromatography (HPLC) technique. In this paper, three different nonlinear models including artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM),in addition to a classical linear model [multilinear regression analysis (MLR)], were used for the prediction of the retention time (tR) and peak area (PA) for isoquercitrin using HPLC. The simulation uses concentration of the standard, composition of the mobile phases (MP-A and MP-B), and pH as the corresponding input variables. The performance efficiency of the models was evaluated using relative mean square error (RMSE), mean square error (MSE), determination coefficient (DC), and correlation coefficient (CC). The obtained results demonstrated that all four models are capable of predicting the qualitative and quantitative properties of the bioactive compound. A predictive comparison of the models showed that M3 had the highest prediction accuracy among the three models. Further evaluation of the results showed that ANFIS-M3 outperformed the other models and serves as the best model for the prediction of PA. On the other hand, ANN-M3proved its merit and emerged as the best model for tR simulation. The overall predictive accuracy of the best models showed them to be reliable tools for both qualitative and quantitative determination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。