Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production

基质 BRCA1 的下调通过上调 HIF-1α、自噬和酮体产生来驱动乳腺癌肿瘤的生长

阅读:5
作者:Ahmed F Salem, Anthony Howell, Marina Sartini, Federica Sotgia, Michael P Lisanti

Abstract

Our recent studies have mechanistically demonstrated that cancer-associated fibroblasts (CAFs) produce energy-rich metabolites that functionally support the growth of cancer cells. Also, several authors have demonstrated that DNA instability in the tumor stroma greatly contributes to carcinogenesis. To further test this hypothesis, we stably knocked-down BRCA1 expression in human hTERT-immortalized fibroblasts (shBRCA1) using an shRNA lentiviral approach. As expected, shBRCA1 fibroblasts displayed an elevated growth rate. Using immunofluorescence and immunoblot analysis, shBRCA1 fibroblasts demonstrated an increase in markers of autophagy and mitophagy. Most notably, shBRCA1 fibroblasts also displayed an elevation of HIF-1α expression. In accordance with these findings, shBRCA1 fibroblasts showed a 5.5-fold increase in ketone body production; ketone bodies function as high-energy mitochondrial fuels. This is consistent with the onset of mitochondrial dysfunction in BRCA1-deficient fibroblasts. Conversely, after 48 h of co-culturing shBRCA1 fibroblasts with a human breast cancer cell line (MDA-MB-231 cell), mitochondrial activity was enhanced in these epithelial cancer cells. Interestingly, our preclinical studies using xenografts demonstrated that shBRCA1 fibroblasts induced an ~2.2-fold increase in tumor growth when co-injected with MDA-MB-231 cells into nude mice. We conclude that a BRCA1 deficiency in the tumor stroma metabolically promotes cancer progression, via ketone production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。