Fasting-induced RNF152 resensitizes gallbladder cancer cells to gemcitabine by inhibiting mTORC1-mediated glycolysis

禁食诱导的 RNF152 通过抑制 mTORC1 介导的糖酵解使胆囊癌细胞对吉西他滨重新敏感

阅读:6
作者:Ying Tao, Zijun Gong, Sheng Shen, Yaqi Ding, Rui Zan, Bohao Zheng, Wentao Sun, Chaolin Ma, Mengxuan Shu, Xiao Lu, Han Liu, Xiaoling Ni, Houbao Liu, Tao Suo

Abstract

Abnormal mTORC1 activation by the lysosomal Ragulator complex has been implicated in cancer and glycolytic metabolism associated with drug resistance. Fasting upregulates RNF152 and mediates the metabolic status of cells. We report that RNF152 regulates mTORC1 signaling by targeting a Ragulator subunit, p18, and attenuates gemcitabine resistance in gallbladder cancer (GBC). We detected levels of RNF152 and p18 in tissues and undertook mechanistic studies using activators, inhibitors, and lentivirus transfections. RNF152 levels were significantly lower in GBC than in adjacent non-cancer tissues. Fasting impairs glycolysis, induces gemcitabine sensitivity, and upregulates RNF152 expression. RNF152 overexpression increases the sensitivity of GBC cells to gemcitabine, whereas silencing RNF152 has the opposite effect. Fasting-induced RNF152 ubiquitinates p18, resulting in proteasomal degradation. RNF152 deficiency increases the lysosomal localization of p18 and increases mTORC1 activity, to promote glycolysis and decrease gemcitabine sensitivity. RNF152 suppresses mTORC1 activity to inhibit glycolysis and enhance gemcitabine sensitivity in GBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。