Synthesis and Antimicrobial Activity of Methoxy- Substituted γ-Oxa-ε-lactones Derived from Flavanones

甲氧基取代的黄烷酮类γ-氧杂-ε-内酯的合成及抑菌活性

阅读:4
作者:Witold Gładkowski, Monika Siepka, Tomasz Janeczko, Edyta Kostrzewa-Susłow, Jarosław Popłoński, Marcelina Mazur, Barbara Żarowska, Wojciech Łaba, Gabriela Maciejewska, Czesław Wawrzeńczyk

Abstract

Six γ-oxa-ε-lactones, 4-phenyl-3,4-dihydro-2H-1,5-benzodioxepin-2-one (5a) and its five derivatives with methoxy groups in different positions of A and B rings (5b-f), were synthesized from corresponding flavanones. Three of the obtained lactones (5b,c,f) have not been previously described in the literature. Structures of all synthesized compounds were confirmed by complete spectroscopic analysis with the assignments of signals on 1H and 13C-NMR spectra to the corresponding atoms. In most cases, lactones 5a-f exerted an inhibitory effect on the growth of selected pathogenic bacteria (Escherichia coli, Bacillus subtilis, and Staphylococcus aureus), filamentous fungi (Fusarium graminearum, Aspergillus niger, and Alternaria sp.), and yeast (Candida albicans). The broadest spectrum of activity was observed for unsubstituted lactone 5a, which was particularly active against filamentous fungi and yeast. Lactones with methoxy groups in the 3' (5c) and 4' (5d) position of B ring were more active towards bacteria whereas lactone substituted in the 7 position of the A ring (5e) exhibited higher antifungal activity. In most cases, the introduction of lactone function increased the activity of the compound compared to its flavonoid precursors, chalcones 3a-e, and flavanones 4a-f.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。