Rapid Regulation of Human Mesenchymal Stem Cell Proliferation Using Inducible Caspase-9 Suicide Gene for Safe Cell-Based Therapy

利用可诱导的 Caspase-9 自杀基因快速调节人类间充质干细胞增殖以实现安全的细胞治疗

阅读:5
作者:Mari Tsujimura, Kosuke Kusamori, Makiya Nishikawa

Abstract

The regulation of transplanted cell proliferation and function is important to achieve safe cell-based therapies. We previously reported that the proliferation and function of transplanted cells, which expressed the herpes simplex virus thymidine kinase (HSVtk) suicide gene, could be controlled by ganciclovir (GCV) administration. However, there are some concerns regarding the use of GCV. It is reported that the inducible caspase-9 (iC9) gene, a human caspase-9-derived genetically engineered suicide gene, rapidly induces cell apoptosis in the presence of apoptosis inducers, such as AP20187. In this study, we used a combination of the iC9 gene and AP20187 to achieve rapid regulation of transplanted cell proliferation. Cells from the human mesenchymal stem cell line UE7T-13 were transfected with the iC9 gene to obtain UE7T-13/iC9 cells. AP20187 significantly reduced the number of UE7T-13/iC9 cells within 24 h in a concentration-dependent manner. This reduction was much faster than the reduction of HSVtk-expressing UE7T-13 cells induced by GCV addition. Subcutaneous AP20187 administration rapidly reduced the luminescence signal from NanoLuc luciferase (Nluc)-expressing UE7T-13/iC9 cells transplanted into mice. These results indicate that the combined use of the iC9 gene and AP20187 is effective in rapidly regulating transplanted cell proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。