Teneurin trans-axonal signaling prunes topographically missorted axons

Teneurin 跨轴突信号修剪拓扑错误排序的轴突

阅读:4
作者:Olivia Spead, Trevor Moreland, Cory J Weaver, Irene Dalla Costa, Brianna Hegarty, Kenneth L Kramer, Fabienne E Poulain

Abstract

Building precise neural circuits necessitates the elimination of axonal projections that have inaccurately formed during development. Although axonal pruning is a selective process, how it is initiated and controlled in vivo remains unclear. Here, we show that trans-axonal signaling mediated by the cell surface molecules Glypican-3, Teneurin-3, and Latrophilin-3 prunes misrouted retinal axons in the visual system. Retinotopic neuron transplantations revealed that pioneer ventral axons that elongate first along the optic tract instruct the pruning of dorsal axons that missort in that region. Glypican-3 and Teneurin-3 are both selectively expressed by ventral retinal ganglion cells and cooperate for correcting missorted dorsal axons. The adhesion G-protein-coupled receptor Latrophilin-3 signals along dorsal axons to initiate the elimination of topographic sorting errors. Altogether, our findings show an essential function for Glypican-3, Teneurin-3, and Latrophilin-3 in topographic tract organization and demonstrate that axonal pruning can be initiated by signaling among axons themselves.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。