Phenotypic and proteomic differences in biofilm formation of two Lactiplantibacillus plantarum strains in static and dynamic flow environments

静态和动态流环境中两种植物乳杆菌菌株生物膜形成的表型和蛋白质组学差异

阅读:6
作者:Linda Huijboom, Parisa Rashtchi, Marcel Tempelaars, Sjef Boeren, Erik van der Linden, Mehdi Habibi, Tjakko Abee

Abstract

Lactiplantibacillus plantarum is a Gram-positive non-motile bacterium capable of producing biofilms that contribute to the colonization of surfaces in a range of different environments. In this study, we compared two strains, WCFS1 and CIP104448, in their ability to produce biofilms in static and dynamic (flow) environments using an in-house designed flow setup. This flow setup enables us to impose a non-uniform flow velocity profile across the well. Biofilm formation occurred at the bottom of the well for both strains, under static and flow conditions, where in the latter condition, CIP104448 also showed increased biofilm formation at the walls of the well in line with the higher hydrophobicity of the cells and the increased initial attachment efficacy compared to WCFS1. Fluorescence and scanning electron microscopy showed open 3D structured biofilms formed under flow conditions, containing live cells and ∼30 % damaged/dead cells for CIP104448, whereas the WCFS1 biofilm showed live cells closely packed together. Comparative proteome analysis revealed minimal changes between planktonic and static biofilm cells of the respective strains suggesting that biofilm formation within 24 h is merely a passive process. Notably, observed proteome changes in WCFS1 and CIP104448 flow biofilm cells indicated similar and unique responses including changes in metabolic activity, redox/electron transfer and cell division proteins for both strains, and myo-inositol production for WCFS1 and oxidative stress response and DNA damage repair for CIP104448 uniquely. Exposure to DNase and protease treatments as well as lethal concentrations of peracetic acid showed highest resistance of flow biofilms. For the latter, CIP104448 flow biofilm even maintained its high disinfectant resistance after dispersal from the bottom and from the walls of the well. Combining all results highlights that L. plantarum biofilm structure and matrix, and physiological state and stress resistance of cells is strain dependent and strongly affected under flow conditions. It is concluded that consideration of effects of flow on biofilm formation is essential to better understand biofilm formation in different settings, including food processing environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。