Single-Cell Metabolomics-Based Strategy for Studying the Mechanisms of Drug Action

基于单细胞代谢组学的研究药物作用机制的策略

阅读:8
作者:Guizhen Zhu, Wenmei Zhang, Yaoyao Zhao, Tian Chen, Hanyu Yuan, Yuanxing Liu, Guangsheng Guo, Zhihong Liu, Xiayan Wang

Abstract

Studying the mechanisms of drug antitumor activity at the single-cell level can provide information about the responses of cell subpopulations to drug therapy, which is essential for the accurate treatment of cancer. Due to the small size of single cells and the low contents of metabolites, metabolomics-based approaches to studying the mechanisms of drug action at the single-cell level are lacking. Herein, we develop a label-free platform for studying the mechanisms of drug action based on single-cell metabolomics (sMDA-scM) by integrating intact living-cell electro-launching ionization mass spectrometry (ILCEI-MS) with metabolomics analysis. Using this platform, we reveal that non-small-cell lung cancer (NSCLC) cells treated by gefitinib can be clustered into two cell subpopulations with different metabolic responses. The glutathione metabolic pathway of the subpopulation containing 14.4% of the cells is not significantly affected by gefitinib, exhibiting certain resistance characteristics. The presence of these cells masked the judgment of whether cysteine and methionine metabolic pathway was remarkably influenced in the analysis of overall average results, revealing the heterogeneity of the response of single NSCLC cells to gefitinib treatment. The findings provide a basis for evaluating the early therapeutic effects of clinical medicines and insights for overcoming drug resistance in NSCLC subpopulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。