Dual mechanism: Epigenetic inhibitor apabetalone reduces SARS-CoV-2 Delta and Omicron variant spike binding and attenuates SARS-CoV-2 RNA induced inflammation

双重机制:表观遗传抑制剂阿帕贝隆可降低SARS-CoV-2 Delta和Omicron变异株刺突蛋白的结合,并减弱SARS-CoV-2 RNA诱导的炎症反应。

阅读:1
作者:Li Fu ,Dean Gilham ,Stephanie C Stotz ,Christopher D Sarsons ,Brooke D Rakai ,Laura M Tsujikawa ,Sylwia Wasiak ,Jan O Johansson ,Michael Sweeney ,Norman C W Wong ,Ewelina Kulikowski

Abstract

The SARS-CoV-2 virus initiates infection via interactions between the viral spike protein and the ACE2 receptors on host cells. Variants of concern have mutations in the spike protein that enhance ACE2 binding affinity, leading to increased virulence and transmission. Viral RNAs released after entry into host cells trigger interferon-I (IFN-I) mediated inflammatory responses for viral clearance and resolution of infection. However, overreactive host IFN-I responses and pro-inflammatory signals drive COVID-19 pathophysiology and disease severity during acute infection. These immune abnormalities also lead to the development of post-COVID syndrome if persistent. Novel therapeutics are urgently required to reduce short- and long-term pathologic consequences associated with SARS-CoV-2 infection. Apabetalone, an inhibitor of epigenetic regulators of the BET protein family, is a candidate for COVID-19 treatment via a dual mechanism of action. In vitro, apabetalone downregulates ACE2 gene expression to limit SARS-CoV-2 entry and propagation. In pre-clinical models and patients treated for cardiovascular disease, apabetalone inhibits expression of inflammatory mediators involved in the pathologic cytokine storm (CS) stimulated by various cytokines. Here we show apabetalone treatment of human lung epithelial cells reduces binding of viral spike protein regardless of mutations found in the highly contagious Delta variant and heavily mutated Omicron. Additionally, we demonstrate that apabetalone counters expression of pro-inflammatory factors with roles in CS and IFN-I signaling in lung cells stimulated with SARS-CoV-2 RNA. Our results support clinical evaluation of apabetalone to treat COVID-19 and post-COVID syndrome regardless of the SARS-CoV-2 variant. Keywords: Apabetalone; BETi; IFN-I; Inflammation; SARS-CoV-2; Spike-ACE2 binding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。