MEF2C and EBF1 Co-regulate B Cell-Specific Transcription

MEF2C 和 EBF1 共同调节 B 细胞特异性转录

阅读:9
作者:Nikki R Kong, Matthew Davis, Li Chai, Astar Winoto, Robert Tjian

Abstract

Hematopoietic stem cells are capable of self-renewal or differentiation along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for blood progenitor cells is whether to adopt the lymphoid or myeloid fate. Previous work had shown that myocyte enhancer factor 2C (MEF2C) is indispensable for the lymphoid fate decision, yet the specific mechanism of action remained unclear. Here, we have identified early B cell factor-1 (EBF1) as a co-regulator of gene expression with MEF2C. A genome-wide survey of MEF2C and EBF1 binding sites identified a subset of B cell-specific genes that they target. We also determined that the p38 MAPK pathway activates MEF2C to drive B cell differentiation. Mef2c knockout mice showed reduced B lymphoid-specific gene expression as well as increased myeloid gene expression, consistent with MEF2C's role as a lineage fate regulator. This is further supported by interaction between MEF2C and the histone deacetylase, HDAC7, revealing a likely mechanism to repress the myeloid transcription program. This study thus elucidates both activation and repression mechanisms, identifies regulatory partners, and downstream targets by which MEF2C regulates lymphoid-specific differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。