NAMPT/SIRT1 Attenuate Ang II-Induced Vascular Remodeling and Vulnerability to Hypertension by Inhibiting the ROS/MAPK Pathway

NAMPT/SIRT1 通过抑制 ROS/MAPK 通路减轻血管紧张素 II 诱导的血管重塑和高血压易感性

阅读:5
作者:Lei Zhou, Sheng Zhang, Enkhbat Bolor-Erdene, Lingwei Wang, Ding Tian, Yunqing Mei

Abstract

Hypertension is characterized by endothelial dysfunction, vascular remodeling, and rearrangement of the extracellular matrix. Besides, the pathogenesis of hypertension is closely related to excess generation of reactive oxygen species (ROS). Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD) biosynthesis that influences the activity of NAD-dependent enzymes, such as sirtuins, which possess NAD-dependent protein deacetylase activity and cleave NAD during the deacetylation cycle. Recently, NAMPT has been shown to play a crucial role in various diseases associated with oxidative stress. However, the function and regulation of NAMPT in hypertension have not been extensively explored. In the present study, we identified NAMPT as a crucial regulator of hypertension, because NAMPT expression was significantly downregulated in both patients with hypertension and experimental animals. NAMPT knockout (NAMPT+/-) mice exhibited a significantly higher blood pressure and ROS levels after stimulation with angiotensin II (Ang II) than wild-type mice, and the administration of recombinant human NAMPT (rhNAMPT) reversed this effect. In vivo, overexpression of NAMPT protected against angiotensin II- (Ang II-) induced hypertension by inhibiting ROS production via sirtuin 1 in mouse aortic endothelial cells (MAECs) and mouse aortic vascular smooth muscle cells (MOVAs). In turn, NAMPT alleviated the ROS-induced mitogen-activated protein kinase (MAPK) pathway. In conclusion, NAMPT might be a novel biomarker and a therapeutic target in hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。