Machine learning deciphers the significance of mitochondrial regulators on the diagnosis and subtype classification in non-alcoholic fatty liver disease

机器学习揭示线粒体调节剂对非酒精性脂肪性肝病诊断和亚型分类的意义

阅读:5
作者:Bingyu Wang, Hongyang Yu, Jiawei Gao, Liuxin Yang, Yali Zhang, Xingxing Yuan, Yang Zhang

Background

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent liver disease worldwide and lack of research on the diagnostic utility of mitochondrial regulators in NAFLD. Mitochondrial dysfunction plays a pivotal role in the development and progression of NAFLD, especially oxidative stress and acidity β-oxidative overload. Thus, we aimed to identify and validate a panel of mitochondrial gene expression biomarkers for detection of NAFLD.

Conclusion

The four MRGs, namely BCL2L11, NAGS, HDHD3, and RMND1, are novel potential biomarkers for diagnosing NAFLD. A diagnostic model constructed using the four MRGs may aid early diagnosis of NAFLD in clinics.

Methods

We selected the GSE89632 dataset and identified key mitochondrial regulators by intersecting DEGs, WGCNA modules, and MRGs. Classification of NAFLD subtypes based on these key mitochondrial regulatory factors was performed, and the pattern of immune system infiltration in different NAFLD subtypes were also investigated. RF, LASSO, and SVM-RFE were employed to identify possible diagnostic biomarkers from key mitochondrial regulatory factors and the predictive power was demonstrated through ROC curves. Finally, we validated these potential diagnostic biomarkers in human peripheral blood samples and a high-fat diet-induced NAFLD mouse model.

Results

We identified 25 key regulators of mitochondria and two NAFLD subtypes with different immune infiltration patterns. Four potential diagnostic biomarkers (BCL2L11, NAGS, HDHD3, and RMND1) were screened by three machine learning methods thereby establishing the diagnostic model, which showed favorable predictive power and achieved significant clinical benefit at certain threshold probabilities. Then, through internal and external validation, we identified and confirmed that BCL2L11 was significantly downregulated in NAFLD, while the other three were significantly upregulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。