miR-103-3p Regulates the Differentiation and Autophagy of Myoblasts by Targeting MAP4

miR-103-3p通过靶向MAP4调控成肌细胞分化和自噬

阅读:3
作者:Xianxian Zhang, Shihui Huang, Xi Niu, Sheng Li, Jiafu Wang, Xueqin Ran

Abstract

Skeletal muscle is the most abundant tissue in mammals, and myogenesis and differentiation require a series of regulatory factors such as microRNAs (miRNAs). In this study, we found that miR-103-3p was highly expressed in the skeletal muscle of mice, and the effects of miR-103-3p on skeletal muscle development were explored using myoblast C2C12 cells as a model. The results showed that miR-103-3p could significantly reduce myotube formation and restrain the differentiation of C2C12 cells. Additionally, miR-103-3p obviously prevented the production of autolysosomes and inhibited the autophagy of C2C12 cells. Moreover, bioinformatics prediction and dual-luciferase reporter assays confirmed that miR-103-3p could directly target the microtubule-associated protein 4 (MAP4) gene. The effects of MAP4 on the differentiation and autophagy of myoblasts were then elucidated. MAP4 promoted both the differentiation and autophagy of C2C12 cells, which was contrary to the role of miR-103-3p. Further research revealed that MAP4 colocalized with LC3 in C2C12 cell cytoplasm, and the immunoprecipitation assay showed that MAP4 interacted with autophagy marker LC3 to regulate the autophagy of C2C12 cells. Overall, these results indicated that miR-103-3p regulated the differentiation and autophagy of myoblasts by targeting MAP4. These findings enrich the understanding of the regulatory network of miRNAs involved in the myogenesis of skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。