Genetic Interactions Between BOB1 and Multiple 26S Proteasome Subunits Suggest a Role for Proteostasis in Regulating Arabidopsis Development

BOB1 与多个 26S 蛋白酶体亚基之间的遗传相互作用表明蛋白质稳态在调节拟南芥发育中发挥作用

阅读:5
作者:Elan W Silverblatt-Buser, Melissa A Frick, Christina Rabeler, Nicholas J Kaplinsky

Abstract

Protein folding and degradation are both required for protein quality control, an essential cellular activity that underlies normal growth and development. We investigated how BOB1, an Arabidopsis thaliana small heat shock protein, maintains normal plant development. bob1 mutants exhibit organ polarity defects and have expanded domains of KNOX gene expression. Some of these phenotypes are ecotype specific suggesting that other genes function to modify them. Using a genetic approach we identified an interaction between BOB1 and FIL, a gene required for abaxial organ identity. We also performed an EMS enhancer screen using the bob1-3 allele to identify pathways that are sensitized by a loss of BOB1 function. This screen identified genetic, but not physical, interactions between BOB1 and the proteasome subunit RPT2a Two other proteasome subunits, RPN1a and RPN8a, also interact genetically with BOB1 Both BOB1 and the BOB1-interacting proteasome subunits had previously been shown to interact genetically with the transcriptional enhancers AS1 and AS2, genes known to regulate both organ polarity and KNOX gene expression. Our results suggest a model in which BOB1 mediated protein folding and proteasome mediated protein degradation form a functional proteostasis module required for ensuring normal plant development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。