The umbilical cord mesenchymal stem cell-derived exosomal lncRNA H19 improves osteochondral activity through miR-29b-3p/FoxO3 axis

脐带间充质干细胞来源的外泌体 lncRNA H19 通过 miR-29b-3p/FoxO3 轴改善骨软骨活性

阅读:4
作者:Litao Yan, Gejun Liu, Xing Wu

Background

Our previous study revealed that the exosomal lncRNA H19 derived from umbilical cord mesenchymal stem cells (UMSCs) plays a pivotal role in osteochondral regeneration. In this study, we investigated whether the exosomal lncRNA H19 could act as a competing endogenous RNA (ceRNA) to potentiate osteochondral activity in chondrocytes.

Conclusions

Our study revealed a significant role in the development of strategies against cartilage defects for UMSC-derived exosomes that overexpress lncRNA H19. Exosomal H19 was found to promote chondrocyte migration, matrix secretion, apoptosis suppression, as well as senescence suppression, both in vitro and in vivo. The specific mechanism lies in the fact that exosomal H19 acts as a ceRNA against miR-29b-3p to upregulate FoxO3 in chondrocytes.

Methods

Dual-luciferase reporter assay, RNA pull-down, RNA immunoprecipitation (RIP), and fluorescence in situ hybridization (FISH) were carried to verify the interaction between miR-29b-3p and both lncRNA H19 and the target mRNA FoxO3. Chondrocytes were treated with UMSC-derived exosomes, which highly expressing lncRNA H19 expression, followed by apoptosis, migration, senescence, and matrix secretion assessments. An in vivo SD rat cartilage defect model was carried out to explore the role and mechanism of lncRNA H19/miR-29b-3p.

Results

UMSCs were successfully identified, and exosomes were successfully extracted. Exosomes exhibited the ability to transfer lncRNA H19 to chondrocytes. Mechanistically, exosomal lncRNA H19 potentiated osteochondral activity by acting as a competing endogenous sponge of miR-29b-3p, and miR-29b-3p directly targeted FoxO3. Intra-articular injection of exosomes overexpressing lncRNA H19 could promote sustained cartilage repair; however, this effect could be undermined by miR-29b-3p agomir. Conclusions: Our study revealed a significant role in the development of strategies against cartilage defects for UMSC-derived exosomes that overexpress lncRNA H19. Exosomal H19 was found to promote chondrocyte migration, matrix secretion, apoptosis suppression, as well as senescence suppression, both in vitro and in vivo. The specific mechanism lies in the fact that exosomal H19 acts as a ceRNA against miR-29b-3p to upregulate FoxO3 in chondrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。