Activation of Toll-like receptor 7 provides cardioprotection in septic cardiomyopathy-induced systolic dysfunction

Toll 样受体 7 的激活可为脓毒症性心肌病引起的收缩功能障碍提供心脏保护

阅读:5
作者:Xie Saiyang, Wu Qingqing, Xu Man, Liu Chen, Zhang Min, Xing Yun, Shi Wenke, Wu Haiming, Zeng Xiaofeng, Chen Si, Guo Haipeng, Deng Wei, Tang Qizhu

Background

As a pattern recognition receptor, Toll-like receptor 7 (TLR7) widely presented in the endosomal membrane of various cells. However, the precise role and mechanism of TLR7 in septic cardiomyopathy remain unknown. This study aims to determine the role of TLR7 in cardiac dysfunction during sepsis and explore the mechanism of TLR7 in septic cardiomyopathy.

Conclusions

Our data demonstrated that activation of TLR7 protected against sepsis-induced cardiac dysfunction through promoting cAMP-PKA-PLN pathway, and we revealed that TLR7 might be a novel therapeutic target to block the septic cardiomyopathy and support systolic function during sepsis.

Methods

We generated a mouse model of septic cardiomyopathy by challenging with lipopolysaccharide (LPS). TLR7-knockout (TLR7-/- ), wild-type (WT) mice, cardiac-specific TLR7-transgenic (cTG-TLR7) overexpression, and littermates WT (LWT) mice were subjected to septic model. Additionally, to verify the role and mechanism of TLR7 in vitro, we transfected neonatal rat ventricular myocytes (NRVMs) with Ad-TLR7 and TLR7 siRNA before LPS administration. The effects of TLR7 were assessed by Ca2+ imaging, western blotting, immunostaining, and quantitative real-time polymerase chain reaction (qPCR).

Results

We found that TLR7 knockout markedly exacerbated sepsis-induced systolic dysfunction. Moreover, cardiomyocytes isolated from TLR7-/- mice displayed weaker Ca2+ handling than that in WT mice in response to LPS. Conversely, TLR7 overexpression alleviated LPS-induced systolic dysfunction, and loxoribine (TLR7-specific agonist) improved LPS-induced cardiac dysfunction. Mechanistically, these optimized effects were associated with enhanced the adenosine (cAMP)-protein kinase A (PKA) pathway, which upregulated phosphorylate-phospholamban (p-PLN) (Ser16) and promoted sarco/endoplasmic reticulum Ca2+ ATPase (Serca) and Ryanodine Receptor 2 (RyR2) expression in the sarcoplasmic reticulum (SR), and ultimately restored Ca2+ handling in response to sepsis. While improved Ca2+ handling was abrogated after H89 (a specific PKA inhibitor) pretreatment in cardiomyocytes isolated from cTG-TLR7 mice. Consistently, TLR7 overexpression improved LPS-induced Ca2+ -handling decrement in NRVMs. Nevertheless, TLR7 knockdown showed a deteriorative phenotype. Conclusions: Our data demonstrated that activation of TLR7 protected against sepsis-induced cardiac dysfunction through promoting cAMP-PKA-PLN pathway, and we revealed that TLR7 might be a novel therapeutic target to block the septic cardiomyopathy and support systolic function during sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。