Combined Omics Reveals That Disruption of the Selenocysteine Lyase Gene Affects Amino Acid Pathways in Mice

联合组学研究显示硒代半胱氨酸裂解酶基因破坏会影响小鼠的氨基酸途径

阅读:7
作者:Lucia A Seale, Vedbar S Khadka, Mark Menor, Guoxiang Xie, Ligia M Watanabe, Alexandru Sasuclark, Kyrillos Guirguis, Herena Y Ha, Ann C Hashimoto, Karolina Peplowska, Maarit Tiirikainen, Wei Jia, Marla J Berry, Youping Deng

Abstract

Selenium is a nonmetal trace element that is critical for several redox reactions and utilized to produce the amino acid selenocysteine (Sec), which can be incorporated into selenoproteins. Selenocysteine lyase (SCL) is an enzyme which decomposes Sec into selenide and alanine, releasing the selenide to be further utilized to synthesize new selenoproteins. Disruption of the selenocysteine lyase gene (Scly) in mice (Scly-/- or Scly KO) led to obesity with dyslipidemia, hyperinsulinemia, glucose intolerance and lipid accumulation in the hepatocytes. As the liver is a central regulator of glucose and lipid homeostasis, as well as selenium metabolism, we aimed to pinpoint hepatic molecular pathways affected by the Scly gene disruption. Using RNA sequencing and metabolomics, we identified differentially expressed genes and metabolites in the livers of Scly KO mice. Integrated omics revealed that biological pathways related to amino acid metabolism, particularly alanine and glycine metabolism, were affected in the liver by disruption of Scly in mice with selenium adequacy. We further confirmed that hepatic glycine levels are elevated in male, but not in female, Scly KO mice. In conclusion, our results reveal that Scly participates in the modulation of hepatic amino acid metabolic pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。