A regulatory sub-circuit downstream of Wnt signaling controls developmental transitions in neural crest formation

Wnt 信号下游的调节子电路控制神经嵴形成中的发育转变

阅读:5
作者:Ana Paula Azambuja, Marcos Simoes-Costa

Abstract

The process of cell fate commitment involves sequential changes in the gene expression profiles of embryonic progenitors. This is exemplified in the development of the neural crest, a migratory stem cell population derived from the ectoderm of vertebrate embryos. During neural crest formation, cells transition through distinct transcriptional states in a stepwise manner. The mechanisms underpinning these shifts in cell identity are still poorly understood. Here we employ enhancer analysis to identify a genetic sub-circuit that controls developmental transitions in the nascent neural crest. This sub-circuit links Wnt target genes in an incoherent feedforward loop that controls the sequential activation of genes in the neural crest lineage. By examining the cis-regulatory apparatus of Wnt effector gene AXUD1, we found that multipotency factor SP5 directly promotes neural plate border identity, while inhibiting premature expression of specification genes. Our results highlight the importance of repressive interactions in the neural crest gene regulatory network and illustrate how genes activated by the same upstream signal become temporally segregated during progressive fate restriction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。