Theoretical and Experimental Designs on Several Mechanical Properties of Cu-Al-Zn Shape Memory Alloys Used in the Processing Industry

加工工业用Cu-Al-Zn形状记忆合金若干力学性能的理论与实验设计

阅读:5
作者:Constantin Plăcintă, Sergiu Stanciu, Mirela Panainte-Lehadus, Emilian Mosnegutu, Florin Nedeff, Valentin Nedeff, Claudia Tomozei, Tudor-Cristian Petrescu, Maricel Agop

Abstract

By assimilating shape memory alloys with mathematical multifractal-type objects, a theoretical model based on Scale Relativity Theory in the form of The Multifractal Theory of Motion, in order to explain the mechanical behavior of such material, is proposed. The model is validated by analyzing the mechanical behavior of Cu-Al-Zn shape memory alloy with various chemical compositions. More precisely, the multifractal tunnel effect can "mime" the mechanical hysteresis of such a material, a situation in which a direct correspondence for several mechanical properties of Cu-Al-Zn is highlighted (the chemical composition can be correlated with the shapes of the curves controlled through the multifractality degree, while the areas delimited by the same curves can be correlated with the multifractal specific potential, as a measure of the mechanical memory degree).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。