On the Prediction of the Flow Behavior of Metals and Alloys at a Wide Range of Temperatures and Strain Rates Using Johnson-Cook and Modified Johnson-Cook-Based Models: A Review

使用 Johnson-Cook 模型和改进的 Johnson-Cook 模型预测金属和合金在各种温度和应变速率下的流动行为:综述

阅读:5
作者:Abdallah Shokry, Samer Gowid, Hasan Mulki, Ghais Kharmanda

Abstract

This paper reviews the flow behavior and mathematical modeling of various metals and alloys at a wide range of temperatures and strain rates. Furthermore, it discusses the effects of strain rate and temperature on flow behavior. Johnson-Cook is a strong phenomenological model that has been used extensively for predictions of the flow behaviors of metals and alloys. It has been implemented in finite element software packages to optimize strain, strain rate, and temperature as well as to simulate real behaviors in severe conditions. Thus, this work will discuss and critically review the well-proven Johnson-Cook and modified Johnson-Cook-based models. The latest model modifications, along with their strengths and limitations, are introduced and compared. The coupling effect between flow parameters is also presented and discussed. The various methods and techniques used for the determination of model constants are highlighted and discussed. Finally, future research directions for the mathematical modeling of flow behavior are provided.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。