Daidzein suppresses TGF-β1-induced cardiac fibroblast activation via the TGF-β1/SMAD2/3 signaling pathway

大豆黄酮通过 TGF-β1/SMAD2/3 信号通路抑制 TGF-β1 诱导的心脏成纤维细胞活化

阅读:5
作者:Jiangcheng Shu, Lizhi Hu, Yichen Wu, Long Chen, Kai Huang, Zhaohui Wang, Minglu Liang

Abstract

Myocardial fibrosis is a concomitant bioprocess associated with many cardiovascular diseases (CVDs). Daidzein is an isoflavone that has been used for the treatment of CVDs. This study aimed to reveal its role in myocardial fibrosis. Our results indicate that daidzein had a nontoxic effect on cardiac fibroblasts and that TGF-β1 and TGFβRI levels were gradually decreased by daidzein in a dose-dependent manner. In the current study, we show that daidzein significantly inhibited TGF-β1-induced mRNA and protein expression of α-SMA, collagen I, and collagen III. Accordingly, immunofluorescence staining of α-SMA was performed. Daidzein also inhibited TGF-β1-induced cardiac fibroblast proliferation and migration. Mechanistically, daidzein inhibited the TGF-β/SMAD signaling pathway induced by TGF-β1 in cardiac fibroblasts. Additionally, daidzein ameliorated MI-induced cardiac dysfunction and cardiac fibrosis in vivo. Based on these findings, we conclude that daidzein reduces TGF-β1-induced cardiac fibroblast activation by partially regulating the TGF-β1/SMAD2/3 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。