Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy

肾小管上皮细胞中 TIPE1 的上调通过破坏 PHB2 介导的线粒体自噬加重糖尿病肾病

阅读:5
作者:Lei Liu, Fang Bai, Hui Song, Rong Xiao, Yuzhen Wang, Huimin Yang, Xiaolei Ren, Shuangjie Li, Lifen Gao, Chunhong Ma, Xiangdong Yang, Xiaohong Liang

Abstract

Renal tubular epithelial cells (RTECs) are one of the most mitochondria-rich cell types, and are thus vulnerable to mitochondrial dysregulation, which is defined as a pivotal event in tubular damage in diabetic nephropathy (DN). However, the underlying mechanisms remain largely unknown. Here, we investigated the role and mechanisms of tumor necrosis factor alpha-induced protein 8-like 1 (TNFAIP8L1/TIPE1) in high glucose (HG)-induced mitochondrial dysfunction in RTECs and DN progression. TIPE1 expression was predominantly upregulated in RTECs in patients with DN and mice with streptozotocin (STZ)-induced DN. Conditional knockout of Tipe1 in RTECs significantly decreased the urine protein creatinine ratio, renal tubular damage, epithelial-mesenchymal transition, and interstitial fibrosis in STZ-induced mice. RNA sequencing revealed that citrate cycle-related genes were positively enriched in the renal tissues of RTEC-specific Tipe1 knockout mice. Tipe1 deficiency upregulated ATP levels, mitochondrial membrane potential, and respiration rate, but downregulated mitochondrial ROS levels in RTECs. Furthermore, Tipe1 ablation led to enhanced mitophagy in RTECs, indicative of increased LC3II, PINK1, and Parkin expression, but decreased p62 expression in mitochondria. Mechanistically, mass spectrometry screening and co-immunoprecipitation assays revealed the interaction of TIPE1 with prohibitin 2 (PHB2), a crucial mitophagy receptor. Intriguingly, TIPE1 promoted the ubiquitination and proteasomal degradation of PHB2. Subsequently, PHB2 knockdown almost abrogated the improvement of Tipe1 loss on HG-induced tubular cell mitophagy and damage. Thus, TIPE1 disrupts mitochondrial homeostasis in RTECs and promotes tubular damage by destabilizing PHB2 under HG conditions. Hence, TIPE1 may act as a potential therapeutic target to prevent DN progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。